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A V E R A G E D  R O T A T I O N S  A T  F I N I T E  P L A N E  S T R A I N  

V.  D.  B o n d a r '  UDC 539.3 

The averaged rotations and other mechanical parameters at finite plane strains of an elastic 
material, which are characterized by a linear relation between the Cauchy stresses and the 
Almansi strains, are studied. The form of the elastic potential is determined. The displacement 
problem is reduced to a boundary-value problem for complex potentials, which is solved in terms 
of Cauchy-type integrals for the specified boundary displacements. The results obtained are 
compared with the linear solution. 

1. In the linear theory of elasticity, the strain and rotation of one element of a material, which are 
defined as the symmetric and antisymmetric parts of the displacement gradient, are small quantities. In the 
nonlinear theory of elasticity, the strains and rotations are finite. In actual-state variables, the strains are 
characterized by the Almansi tensor and, according to V. V. Novozhilov, the rotations are characterized by 
the rotations averaged over the elementary volume. We consider the behavior of the averaged rotations and 
other mechanical parameters of an elastic body under plane strain within the framework of the nonlinear 
theory of elasticity. 

Static deformation is governed by the equations of equilibrium, the continuity equation, Murnaghan's 
law, the strain-displacement relations, and the boundary conditions 

div P + p f  = O, u = P/Po = v/1 - 2~1 + 4e2 - 8~3, 

e l = t r e ,  2e2=( t r a )  2 - t r e  2, r  (1) 

d~ 2 e = V u + u V - ( V u ) ' ( u V ) ,  u r ~  = h '  P . n g p = p .  P = . ( a  - 2.~). ~ - ,  

Here u, f ,  h, p, and n are the vectors of displacements, body forces, boundary displacements, stresses, and 
the outward normal, respectively, G, P, and e are the metric, Cauchy stress, and Almansi strain tensors, 
respectively, Vu and uV are the displacement and transposed displacement gradients, respectively, el, e2, 
e3, P0, P, u, and (I) are the basis strain invariants, the initial, actual, and relative densities of the material, 
and the elastic potential, respectively, and E~ and ~"]p a r e  the regions on the surface of the body where the 
displacements and stresses are specified, respectively [1]. 

For a homogeneous isotropic body under plane strain, the conditions C 3  ----- 0 and (I) = (I)(el, e2) hold. 
With allowance for the expressions for the tensor gradients of the strain invariants and the Hamilton-Kelly 
identity for strains [1] 

de1 de2 
=G, = e l G - e ,  e 2 - e l e + e 2 G = O ,  

de de 

Murnaghan's law takes the form of a quasilinear stress-strain relation, which can be written in the form of 
Hooke's law with the variable coefficients of elasticity expressed in terms of the elastic potential: 
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P = ~lA(xl, ~2)G + 2M(~l, ~2)~; (2) 

- - - -  u - -  -+- (e l  --  2S2) 2 M  =- - u  2 + = v /1  2~1 -k- 4x2. (3) 

Transforming formulas (3), we obtain the potential gradients 

L '3 0(I) - -  -- 2(r -~ /~[) ---- b'3(I)2, (4) ---- SlA + (2Sl - 4~2)/11 = u3(D1, u3 0(D 
0~2 

and the compatibility condition 0(I)1/0~2 = 0(P2/0sl imposes a restriction on the coefficients of elasticity: 

2 0(viA + M) O(slA + (2ci - 4c2)M) 
+ + 6 M  = o. (5) 

0sl Os~ 

From the coefficients of elasticity subject to condition (5), we find the potential gradients (4) and, hence, 
determine the elastic potential by the quadrature [2] 

S1 E2 
P 

(I)(Yl, E2)= / (I)I(E1, ~'2) d~ 1 -4- / (I)2(0, z2) d~ 2 + c o n s t .  (6) 
0 0 

In the absence of body forces, relations (1) can be written in the complex actual-state variables z = 
x + iy  and 5 = x - iy  (x and y are the Cartesian coordinates) to give the main plane-strain problem 

O p  i~ O p  12 
0----~ - ~  + 0---T - 0, u = x / t  - 2sl + 4s2, E1 ---- ~ i 2  4~2 = (S12)2 __ E11522 

p n  = t52. ~ = 2M(sl ,  s2)~ll, 

u L~ = h ( s ) ,  

p12=2N(~ l , e2 )_  ~12 ( N = A + M ) ,  

i - ~ ~ 2 = i - ~ l - -~-#z + o ~  o ~  ' 

p12 __dZds - p l l  d~s Lp ---- 2ip(s).  

(7) 

Here L~, and Lp are the parts of the contour L [the boundary of the cross section of the body D parallel to the 
deformation plane determined by the equations z = z(s)  and 5 = 5(s)], where the displacements and stresses 
are specified, respectively, s is the arc of the contour, and the numerical superscripts denote the complex 
vector and tensor components; the complex displacement-vector and stress-tensor components are related 
to the Cartesian components of the same quantities (denoted by alphabetical subscripts) by the following 
component-transformation formulas [3]: 

U 1 = ?.t ~ -  U x  "q- i U y ,  U 2 ~-  "~t = U x  - -  i U y ,  

p n  = Pzz - Pyy -b 2iPxy, p22 __ Pzx - Pyy - 2iPxy, p12 ___ p21 -_ Pzx + Pyy. 

When only the displacements are specified on the boundary, we have the displacement problem 

o JJ +b-/ =0, uL=h(s), (8) 
which follows from (7). The displacements found from (8) determine the density and the stresses: 

u = u ( z , ~ ) ,  . =  i-~ i-~ a ~ o z '  

(9) 

. . . .  0 1 p n  =/522 = 4M ~-~ O z /  05 Oz]" 

According to V. V. Novozhilov [4], the rotation of an elementary volume at finite strains can be 
described by the volume-average rotations f~aZ, which are expressed in terms of the linear rotations w az and 
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strains e a~. In the plane problem, the linear quantities, their invariants, and the averaged rotations are given 

by 

w n  = s = 0, w2: = &12 -- Ou 0,5 Oz 05 '  0;1 = O, 4w2 = ~12W21, 

Oit el 2 : e21 Ou O'tt el 2 e12e21 elle22 ' e11=~22=2~__~, = 0"--~ +0--~' e l =  , 4 e 2 =  -- 

(10) 

_ 4 , . ,  + 4(1 - el + e2) = (2 - e12)  2 - c u e  22 = 4u + \Oz  + 057  - 4 Oz 05 

w21 2w 21 
~'~11 = ~ 2 2  - ~ -  O, ~21 = _ = 2iWzy). 

v / 1 - e : + e 2  X/4u+(w2:)2 (9. 2 1 = 2 i ~ z y .  w 2: 

2. ~Ve consider the plane strain of materials that  are characterized by a linear relation between the 
Cauchy and Almansi tensors. It follows from Murnaghan's  law (2) and condition (5) that  the coefficients of 

elasticity are constant and related by the condition 

A = const, M = const, N = A + M = 0. (11) 

In this case, the law (2) and the potential (6) include only one constant: 

P = M ( 2 :  - ~lG), p U  = p22 = 2M~11, p12 = 0, 6P(~l, ~2) = 
J~f(1  --  -=I) 

- ~I; 
-v/1 - 2~: + 4:2 

in (7): 

- f d 5  L = 
:() ) g ( s ) =  9 -~  i p(s)  d s + C  , C = c o n s t .  (15) 

0 
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Eq. (8) takes the form 

( 0 ~ 4  O2u Ou 025 
1 - 05 / Oz 02 02 4 0 z  0---~ = O. 

Supplementing this equation by the complex-conjugate equality and expressing the Laplace operator  in the 
complex variables A = Ozx + Oyy = 40z:, we obtain the homogeneous algebraic system of equations for Au 

and Aii 

__-~z) A u -  ~ z  A S = 0 ,  - - - -  A'u + 0 z  -- Oz ) A:t  = 0 .  

The determinant  of this system is equal to the relative density (9) and, hence, it does not vanish; therefore, 
the system has only the trivial solution Au = 0 and Ai~ = 0. In this case, problem (8) takes the form of the 

Dirichlet problem for the harmonic equation: 

O2'l t  - -  O, t t  L "~- h(s).  (12) 
Oz O~ 

Using (9)-(12), we express the quantities considered in terms of two complex potentials c;(z) and ~;(z) 

and obtain the boundary-value problem for the potentials: 

u(z, 2) = ~(z) - ~ ( : ) ,  u(z, 5) = (1 - ~'(z))(1 - ~'(5)) - ~ ' ( z )~ ' ( : ) ,  

PU(5)  : - 4 M ~ ' ( 5 ) ( 1  - ~'(2)), P22(z) = -4MW'(z)(1  - ~y'(z)), p :2  = 0, (13) 

~ i 1  ~--- ~ 2 2  = O, a 2 1 ( z ,  Z,) = 2 ( ~ ' ( Z )  - -  @t (5 ) )  

V/4u + (~'(z) - ~'(5)) 2' 

- = (14)  

When only the stresses are specified on the boundary, the potentials are determined from the second condition 



Thus,  for the materials  considered, the potent ial  representations are linear for displacements and 

nonlinear for other quantities. As a result, the boundary-value problem for potentials  is linear in displacements 

and nonlinear in stresses. 
3. To compare  the above results with those obtained within the f ramework of the linear theory, we 

introduce the potentials  ~1 = 4M2~2 and ~bl = 2Al~b. As a result, formulas (13)-(15) become 

2Mu= ~1 *~1, , =  1 -  ~ ~ 1 -  ~a~ ~ ,r., 
25,I ' 4 5 i  2 ] 4 5 I  2 ) 45 I  2 '  45 I  2 J '  

p 1 2  = 0 ,  ~'~11 : .  ~ 2 2  ----. 0 ,  f i21  = 2 ( ~  - ~ )  
x/64vM4 _ (p~ _ ~ ) 2 '  (16) 

$ 

~1 ~lLu _43l_.___~/Wl~ldSLv=i/pds+C" 2M = 2Mh,  (bl 1 r, -, 

0 
Let P0 and L0 be the characteristic stress and dimension, respectively and a = Po/M be a dimensionless 

parameter .  Expressing the quantit ies considered in terms of dimensionless quantities (asterisked) 

p l l  = pop1.1, p12 = pop12, P = POP., M = PoM.,  u = L0u.,  

2 z = L o z . ,  s = L o s . ,  h = L 0 h . ,  a = I / M . ,  ~1=PSLoc21. �9 

Wl = PoL0tOl., C = PoLoC., v = /2,,  ~ 2 1  = ~'~21, 

we write relations (16) in dimensionless form: 

(72 p:l = p. 2 - 2 ; ' , , ( 1  - 
m _  - T ~ ' 1 . ) ,  n : 2  ---~ O, 

(17) 
= = o ,  al,  = - 

8. 

(7 (72 '~1.~1. = P* + 
2 ~21. - ' ~ 1 .  = 2 M . h . ,  ~1. - -~- Lp 

0 

Assuming tha t  the dimensionless quantities have finite moduli in the closed region and the dimensionless 

pa ramete r  is small compared  to unity, we can ignore small (parameter-containing) terms in (17). As a result 

(after revert ing to the dimensional quantities),  we obtain  the formulas 

2Mu -g ' l ,  p l l  -~- ~ 2 2  - ,  p12 . [,~I1 : ~=~22 : - : --21/21, : O. : O, ~r~'21 : O, 

8 
f 

Lu Lp J 
u = 1, - - ~ 1  : 2Mh, ~1 = i pds  + C, 

0 
which coincide with the formulas of linear elasticity [5, 6] 

2pu = (3 - 4u)~1 - z ~  - ~1, # w n  ~--- #&22 : 0, # ~ 2 1  : 2(1 - v)(c2~ - ~ ) ,  

: - I  1 - -  2 z /  - I  
p l l = p 2 2  - 2 ( z ~ ] ' + ~ ) ,  P '2=2(c;~+~1),  v = l  - - ( c ; ~ + r  

P 

(3 - 4v)r - -' L,, -~' + ~bl Lp = i ] p d s  + C z~l  - ~ = 2#h, qZl + ZC~l 

0 
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(# and ~ are the shear modulus and Poisson's ratio, respectively) when the potential  ~1 is equal to zero. 
4. Let 1 be a closed contour in the r eg ion / )  that  is determined by the equations z = z(s)  and 5 = 2(s). 

If the stress vector is specified at each point of the contour, the components of the principal vector F and 
the principal moment M of the contour forces are given by 

- -  - -  d s  F = Fz + iFy = pds  = ~/ p12 p l l  
ds 

/ 4 
Using relations (13), we write these formulas in the form 

= 2 M i [ o ( : )  - x ( z ) ] , ,  M = -2Mae[z( (z) - x ( z ) ) ] , ,  X = ( l S )  ? 

where [A]l denotes the increment in A for the positive path tracing of the contour I. 
Formulas (13) imply that  the stresses, rotations, and density preserve their values when c 2 and ~ are 

replaced by the potentials F + a and ~ + /3  (ct and /3 = const). Owing to this arbitrariness, one can fix 
the values of the potentials at one of the points of the region. If, along with the indicated quantities, the 
displacements must also preserve their values, then the constants must satisfy the condition a - ~ = 0. In 
this case, only one potential can be fixed at a certain point. 

The  complex potentials are muttivalued in the infinite, simply connected region D with boundary L. 
Let the quantities considered be uniquely determined in D. In accordance with (13), for any closed contour 
l E / )  enclosing L, we have 

[ ~'-~'  ] 
. . . .  -~- 0 .  [c3 - ~]l = 0, [(1 - qZ')(1 - 95') - g)'~']l = 0, ['~'(1 - c2')]l = 0, V/4~ + (c 2' - ~5')2 l 

With allowance for the properties of the increments in the function W ( z ,  5) [7] 

it follows that  the potential gradients must be single-valued: [F']~ = 0 and [~"]l = 0. The potentials can be 
expressed in terms of the single-valued functions ~0 and ~ 0  and their increments are related by the condition 

[c2] l=27r,ia,  [~;']z=27rib, a + l ) = 0 ,  p ( z ) = a l n z + ~ 2 ~  ~ ; , ( z ) = b l n z + @ ~  (19) 

Expanding c~ ~ and '0 ~ in the Laurent series and calculating the quantities (13). we infer that  the 
stresses, rotations, and density are bounded in the infinite region, provided the potentials have the form 

q~(z) = a In z + a lz  + c20(z), ~(z) = b In z + blz + ~o(z) ,  
(20) 

o o  

pO(Z) = E a - n z - n '  ~O(Z) = E b-nz-n" 
n = 0  n = 0  

Let the values 11 12 21 P ~ ,  P~g, u~,  and 12~ be specified at infinity. Then, in accordance with (13) and (20), 

we obtain the relations 

. . . .  f ~  X/'4u~ + (al - 51) 2 = 2(at - al).  P ~  - 4 M b l ( 1  - al) ,  P 2  0, uz~ [1 - alJ 2 ]bl] 2, 21 

Assuming that  al = alx q- ialy and bl = blx -k ibly and using the relations between the complex and 
Cartesian stress and rotat ion components, we obtain the following equations for the second coefficients in 

expansions (20): 

-PxC~ = 2M(blz(1  - alz)  + blyaly), Pz~y = 2 M ( - b l z a l y  + bly(1 - atx) ), 
(21) 

e c  2 9 2 e ~  �9 e c 2  ( f ~ )  (~'o~ - a-~) . . . .  aly, 4M2[ 1 al[ 4 4 M 2 ~ J  1 - a~[ 2 ]P~z - ~P~] = O. 

Hence, 
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oo 2 

V/ vo~(~xy) (1 -- alz) 2 = 2 1 + ( f ~ ) 2  + ~ (pcr a~y = , 

(1 - a l x ) P ~  + alyP~~ (1 - a l x ) P ~  - alyP~~ 
2Mblz  = (1 - alx) 2 q- a21v ' 2Albly = (1 - alz) 2 + a2y 

The conditions P ~  = 0 and (1 - alx) 2 ~> 0 impose restrictions on the specified quantities: 

~ = - ( ~ ) )  + (1 + V / + ( p ~ ) 2  + P;z + P ~  O, M~o~(l o~ 2 (fl~)2) 21,i2~2 (p~)2 />  O. 

Calculating the principal contour-force vector (18) with allowance for (20) and using (19), we obtain 
the equalities 

[" = 4zcM(b~a - (1 - a~)b), a + b = 0 (22) 

that  determine the coefficients a and b: 

(1  - a ~ ) F  - b~F b lF  - (1  - ~ I ) _ F  
a =  , b =  

4~rMu~ 4~rMuo~ 

Thus, in the expansions of the potentials (20), the first pairs of coefficients are determined by the 
elastic properties of the material, the contour and peripheral loads, and the density and rotation values at 
the periphery. 

For the adopted conditions, displacement (13), which corresponds to potentials (20), 

u = a lz  - {h2 - {~ ln(zS) + E ( a _ n z - "  - {~-nS-'*) 
n=O 

unlimitedly increases at infinity. For this displacement to be limited, one should also set a = - b  = 0 and 
al = bi = O; by virtue of (21) and (22), this constrains the quantities at the contour and periphery: 

F z = F g = O ,  P ~ = P ~ c c = 0 , y  a ~ = O .  r,or 

If all the mechanical quantities are limited in the infinite region, potentials (20) become single-valued 

functions: 
o~ oo 

~(z)  = E a _ . z - " ,  r  = E b-nz-n"  
n = O  n----0 

If the potentials have the form (20) in this region, we can consider the boundary-value problem for the 
single-valued potentials ~0 and ~b0, which follows from (14): 

pO(Z) - (bO(5) L = ho(s), ho(s) = h(s) + blS(S) - alz (s )  + {) In Iz(s)[ 2, z e L. (23) 

Since problem (14) is similar to (23), below we consider the first problem. 
5. We map conformally the simply connected region D onto the interior of the unit circle K with 

circumference "y: 

z = w(~), w'(q) # o, 

As a result, the complex potentials take the form 
~'(~) 

~(z) = ~(~), ~'(z) = w'(~)'  

the mechanical quantities (13) are given by 

t t  -~- ~ ( ~ )  - -  ~ ( ~ ) ,  ~"]11 : ~ 2 2  : O, ~ 2 1  : 
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= r exp (i0) E K.  

~(Z)=V(r ~ ' ( z )=  ~'(~) 
w'(r 

p l l  = /522 = - - 4 5 i  ~"(~)(@'(~) -- @'(~)) 
(e,'(~))2 

2(~'(c)~, ' (~)  - ~' (~)~'(C))  

v / 4 v l w ' ( C ) [  4 + ( ~ ' ( C ) ~ ' ( C )  - ~ ' ( C ) w ' ( C ) )  2 

p 1 2  = O, ~' = I w ' ( ( )  - F'(~)[2  - 10'(~)12 
i.~,(~)12 



and condition (14) becomes a boundary condition for the potentials in the unit circle: 

c2(v ) -- ~(~) = h(v), 7 = exp (iO) E 7. (25) 

Let the boundary-displacement function belong to the class of HSlder functions and one of the potentials 
vanish at the center of the circle: 

h(r) E H, 7- E 7, ~(0) = 0. (26) 

Multiplying (25) by 1/(27ri(T-()),  integrating over the circumference, and taking into account the well-known 
properties of the integrals [6] 

1 / 7 ) ( r ) d ~ "  1 / .6 (e )d~  
2~i ~ -----( = ~(r 2 ~  7 -  < 

3' 9' 

we express the first potential in the form 

- - - 2 ( 0 ) = 0  ( r  

1 ff h(r) de" ~(r = ~ 7 - -  ~ (r e K). (27) 
3' 

Passing to conjugate quantities, from condition (25) we obtain the expression for the second potential: 

1 f e(r = e(0) - ~ 7 - ~  (c e K). 
3' 

After the constant ~(0) is determined from the condition ~p(0) = 0, the second potential takes the form 

1 / ~ . ( ~ ) d 7  1 / [ z ( ~ ) d 7  
Y)(() = ~ v 27ri ~ - -  ~ . (28) 

Formulas (27) and (28) give the solution of problem (25). Indeed, when ( tends from the circle to a certain 
boundary point To = exp (iOo), the potentials take on definite limit values by virtue of (26); according to the 
Sochotsky-Plemelj formulas [6], the latter have the form 

27r 

h(~'o) 1 / h('z) dw h(7o) + 1 / h(O) dO 
c;+(~'0)-- ~(r0) = - - - f -  + ~ , /  7---~0 - ~ ~ 1 - e x p ( i ( O o - O ) ) '  

"~ 0 

27r 

1 / ~ , ( f )  dT ~t(f0) 1 / h ( ~ ) d T  h(T0) 1 / ~t(O)dO 
~+(r0) = r -- ~-~ T 2 27ri ~---'~o -- 2 27r exp (i(0 - 00)) - 1" 

"Y 3 0 

It follows that  the difference p(T0) -- r is equal to h(To). This means that  the potentials satisfy the 
boundary condition (25). 

6. Let an infinite plate in the actual state have an elliptic hole with semiaxes a and b (a > b). We 
consider its deformation for the case where the displacements are equal to the specified values on the hole 
boundary and vanish at infinity. We assume that  the Cartesian axes coincide with the ellipse axes. The 
conformal mapping of the exterior of the ellipse D onto the interior of the unit circle K (the point z = oo 
corresponds to the point ~ = 0) is defined by the function [6] 

z = w(~) = n(rn~ + ~ ) a + b a - b , n =  2 ' m - -  ~ = r e x p ( i 0 )  E K .  (29) 
a + b  

The parameters 0 ~< m < 1 and 0 < n < oc characterize the shape and dimensions of the ellipse, respectively 
[for m = 1, the ellipse becomes a cut, and the mapping is not conformal since w'(:kl) = 0]. One can readily 
establish the formulas 

x = n m r +  cos0, y = n m r -  sin0, 
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which determine the elliptic coordinates r and 0 in the plane of the circle. In these coordinates, the equations 

of the boundary  ellipse L have the form 

XL = n ( m  + 1) cos O, YL = n ( m  -- 1) sin O. (30) 

Let the boundary displacements depend on the dimensions and shape of the hole and the positive 

parameter  a: 

h z  = n ( m c o s O  + a s i n O ) ,  hy  = n ( m s i n O  + a c o s O ) ,  r = l  
(31) 

( h = h z + i h y = n ( m T - ~ c ~ ) ,  v = e x p ( i 0 )  ET) .  

In this ease, we have h(v) E H; therefore, integrals (27) and (28) determine the complex potentials in the 

form 

~(z) = nine, ~(r = inar 

For these potentials and mapping (29), formulas (24) become 

u = n ( m ~  + i a ~ ) ,  ~-~11 = ~ 2 2  = 0, 

~221 = _ 2 m ( (2  _ ~2) (32) 

V/4(1 _ ~ 2 r 1 6 2  _ 1 ) (m~2 _ 1) + m2(r  _ g2)2'  

p l l  = p 2 2  _ 4 i a M ~  2 p12 = 0, u = 1 - -  O ~ 2 ~ 2 ~  2 

(m~ 2 - 1) 2' (m~ 2 - l )(rn~ 2 - I)" 

By virtue of (30) and (31), in the initial state of the plate the coordinates x0 and y0 of the points on 

the hole contour Lo are given by 

xo  = X L  -- h z  = n(cos 0 - ~ sin 0), Yo -~ YL -- h y  ~- - n ( s i n  0 + a cos 0). 

Elimination of the parameter  0 leads to the contour equation x 2 + y0 ~ = Ro 2, where R0 = n v ~  + c~ 2. Hence, 

the hole in the plate is circular before deformation. 
The  density and the displacement, stress, and averaged-rotation components, which are determined in 

the elliptic coordinates r and 0 in terms of the quantities (32) and mapping (29) by the expressions [7] 

have the form 
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. ( r  ~) = .(,-,  0), u~ + iuo  = 

P ~  - Poo + 2 i e r o  = ~ff"(~---~) p l l ,  
r162 

Ir Iw'(r u, 

Prr + PO0 = p 1 2 ,  

~ ' ( ~ )  ~i,, ~rr + ~oo + i (~ro  - ~o~) = ~2~, ~ r  -- ~00 + i(~O + ~0~) = r162 

m r  2 + a r  2 sin 20 - cos 20 

ur  ---- m n r  ~/1 + rn2r  4 -- 2mr  2 cos 20' 

c ~  - o m r  2 cos 20 + m sin 20 

uo = - n r  ~/1 + m 2 r  4 - 2 m r  2 cos 20 ' 

1 - a2r4 2 a ~ ' l r  2 

u = 1 + m 2 r  4 - 2 m r  2 cos 20' Prr = POO = O, Pro = 1 + m 2 r  4 - 2mr 2 cos 20' 

m r  2 sin 20 

~/a cos 2 20 + 2b cos 20 + c'  

a = m 2 r  4, b = - m r 2 ( 1 - a 2 r 4 ) ,  c = l - a 2 r 4 ( 1 H - m 2 r 4 ) .  

By virtue of the condition 

(33) 



1 + m2r "4 - 2mr 2 cos 20/> (1 - mr2) 2 > 0, (34) 

the displacements are real. The  stress field is such tha t  at the sites perpendicular  to the coordinate lines, only 

the shear stresses act. It  follows from (33) that  at infinity (r = 0), the displacements, stresses, and rotat ions 

decrease unlimitedly and the relative density tends to unity: 

u ~ = u ~ = 0 ,  P ; ~ = P ~ = P ~ = O ,  f ~ = f l ~ = f l T ~ = 0 ,  u ~ = l .  

As the boundary  ellipse L(r  = 1) is approached, these quantities take on the values 
a(1 - re, cos 20) + ros in20 L m + a sin 20 - cos 20 u L = - n  

U r = rnn V/1 + m 2 _ 2m cos 20 '  v/1 -}- m 2 -- 2m cos 20 

uL = 1 - a 2 2 a M  
l + m  2 - 2 t a c o s 2 0 '  P L r = P L = O '  p L =  l + m  2 - 2 t a c o s 2 0 '  

m sin 20 

V/1 - a2(1 + m 2) - 2m(1 - a 2) cos20 + m 2 cos 2 20 

The  boundary  displacements have the normal and tangential components  un = - U r  L and at = - u ~ .  
The magni tude  of this displacement a t ta ins  the following extreme values at the points of the ellipse tha t  lie 

on the bisectrix of the coordinate angles: 

uL m a x  ' nf in  3W 771" 7r 57r U L = n [ m  - el for 20 = -~- and -2-" = n ( m + a )  for 2 0 = ~  a n d - ~ ,  

The  ext reme values of the boundary relative density and stresses occur at tile points on the symmet ry  

taxes of the ellipse and are equal to 
1 a 2 - 2 a M  

L ~ P 5  ra in  - -  for 20 ---- 0; 27r, "max (1 - m) 2'  (1 - m) 2 

L 1 - -  Ot 2 L 2 a M  
U m i , -  ( l + m )  2' P / 0 m ~ -  ( l + m )  2 for 20=~r;37r.  

The  averaged boundary  rotations in the even and odd quarters of the ellipse have opposite directions 

and their ex t rema  occur between the points on the symmet ry  axes: 
L m 

~lrOmin ~-  V/I _ m 2 _ a~ for 20 = arccos m. 27r + arccos m, 

L m 
~rOmax : for 20 = 27r - arccos m, 47r - arccos m. 

~ / I  - m '~ - o" 
With  allowance for relation (34) and the expression 

a cos 2 20 + 2bcos20 + c = ('mr 2 cos20 + a2r  4 - 1) 2 -k- ol2r4(1 - 7n2r 4 - a2r 4) (0 < r <~ 1), 

the conditions of positive density and real rotat ion in the plate (33) constrain the parameter  a and the 

boundary  displacement (31): 
a 2 < 1, a 2 < I -m 2. 

Both inequalities are satisfied if the second inequality is satisfied. Thus, in comparison with the relative 

density, the averaged rotat ion imposes a stronger restriction on the boundary  displacement. 

R E F E R E N C E S  

1. L. I. Sedov, Introduction to Continuum Mechanics [in Russian], Fizmatgiz,  Moscow (1962). 
2. V. V. Stepanov, Differential Equations [in Russian], Fizmatgiz, Moscow (1958). 
3. A. E. Green and W. Zerna, Theoretical Elasticity, Clarendon Press, Oxford (1968). 
4. V. V. Novozhilov, Theory of Elasticity [in Russian], Sudpromgiz, Leningrad (1958). 
5. G. V. Kolosov, Application of Complex Diagrams and the Theory of Complex Variables to the Theory of 

Elasticity [in Russian], ONTI,  Moscow (1935). 
6. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Gronin- 

gen, Holland (1953). 
7. J. N. Sneddon and D. S. Berry, The Classical Theory of Elasticity, Springer-Verlag, Berlin (1958). 

555 


